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The heat transfer model of laminar pulsating flow in a channel or tube in rolling motion is established.
The correlations of velocity, temperature and Nusselt number are obtained. And the effects of several
parameters on Nusselt number are investigated. The results are evaluated with Nield & Kuznetsov's work.
It is found that Nield & Kuznetsov's results are not applicable for the laminar pulsating flow in nuclear
power systems in ocean environments.
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1. Introduction

Forced convection with laminar pulsating flow in a channel or
circular tube is a classical problem, and is the subject of hundreds of
papers. It appears that the first analytic studies of laminar pulsating
forced convection in confined spaces were made by Siegel [1] (for
a circular duct) and Siegel and Perlmutter [2] (for a parallel-plates
channel). In each case the fluid velocity was approximated by slug
flow. Moschandreou [3] studied pulsating flow in a circular tube
with uniform constant heat flux on the boundaries. He obtained an
expression for fluctuating part of the temperature using a Green's
function method. However, Hemida [4] pointed out that the solu-
tion of Moschandreou did not satisfy the appropriate differential
equation expressing the conservation of thermal energy. Hemida
also used a Green's function method to find an analytical expres-
sion for the temperature distribution. In order to obtain the Nusselt
number they resorted to a numerical calculation. Yu [5] also
considered the case of a circular tube with constant heat flux. But
he did not present an analytical solution for the bulk temperature
nor for the transient Nusselt number. Nield and Kuznetsov [6] have
obtained analytical expressions for the velocity, temperature
distribution, and transient Nusselt number for the problem of
forced convection using a perturbation approach. Numerical
studies of flow and heat transfer in a circular tube under pulsating
flow condition in the laminar regime were also carried out by
010 Published by Elsevier Masson
Durst [7]. His results indicate that pulsation has no effect on time
averaged heat transfer.

As to the nuclear power systems operating in ocean environ-
ments which mainly include rolling and heaving motions [8], the
coolant within them oscillates periodically. This kind of pulsating
flow is similar to that discussed in [1e7]. Some researchers have
investigated the pulsating flow in nuclear power systems in ocean
environments. A single-phase natural circulation experiment was
carried out by Murata [9] for analyzing the effect of rolling motion
on the thermal hydraulic characteristic of reactor. Yan [10,11] also
investigated the effect of rolling motion on the flowing character-
istics of the coolant in a passive residual heat removal system. To
the author's knowledge, the effect of rolling motion on the laminar
pulsating flow had never been addressed theoretically. In this
paper, the heat transfer model of laminar pulsating flow in a tube in
rolling motion is established. The effects of several parameters on
Nusselt number are investigated. And in the end, Nield & Kuznet-
sov's results are evaluated with the results in this paper.

2. Circular tubes

Assuming the laminar flow is fully developed, and the
NaviereStokes equation can be written as

vu
vt

¼ �1
r

vp
vx

þ y

 
v2u
vr2

þ 1
r
vu
vr

!
(2.1)

where u is velocity, r is flow density, p means pressure and y

denotes kinematic viscosity. x denotes the axial coordinate, which
SAS. All rights reserved.
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Nomenclature

General symbols
d reference length (m)
h heat transfer coefficient (W/m2 K)
K temporary variable
k fluid thermal conductivity (W/m K)
L characteristics length
Nu Nusselt number
n frequency (Hz)
p pressure (Pa)
Pr Prandtl number
R tube radius (m)
r radius (m)
Re Reynolds number
T period (s), temperature (�C)
t time (s)
u velocity (m/s)
x, y coordinate (m)

Greek letters
r density (kg/m3)
y kinematic viscosity (m2/s)
U temporary variables
u angle velocity (rad/s)

Superscripts
* dimensionless variables

Subscripts
0 reference
1, 2 subcomponent
in inlet
m maximum, bulk
r rolling
o oscillating part
w wall
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is overlapped with the tube axis, and r is the radial distance from
the tube axis. The transient pressure drop in a tube can be
expressed as

�1
r

vp
vx

¼ ar � aocos
2pt
Tr

(2.2)

where ao ¼ n2qmL/2. L and n are the characteristic length of the
system and rolling frequency, respectively. qm is rolling amplitude
and Tr is rolling period.

In order to transform the above equations into a dimensionless
form, the following dimensionless parameters are introduced.

u* ¼ u=um; r* ¼ r=R; x* ¼ x=ðRPrReÞ; t* ¼ ta=R2;

r* ¼ r=r0; p* ¼ p=r0u
2
m (2.3)

where

um ¼ R2ar=4y; a ¼ k=r0Cp (2.4)

um is the time averaged velocity in the centerline. R is tube
radius. Pr and Re denote Prandtl and Reynolds number, respec-
tively. r0 is reference density. k is fluid thermal conductivity and Cp
denotes fluid specific heat. The superscript * denotes dimensionless
parameter.

The dimensionless NeS equation can be written as:

vu*

vt*
¼ � 1

r*
vp*

vx*
þ Pr

�
v2u*

vr*2
þ 1
r*

vu*

vr*

�
(2.5)

where

� 1
r*

vp*

vx*
¼ 4Pr� aoRPrRe

u2m
cos

R2nt*

a
(2.6)

Separating the velocity into a steady term and an oscillating
term

u*
�
r*; t*

� ¼ u*1
�
r*
�þ u*2

�
r*; t*

�
(2.7)

The equations of u*1ðr*Þ and u*2ðr*; t*Þ can be expressed as

�
v2u*1
vr*2

þ 1
r*

vu*1
vr*

�
þ 4 ¼ 0 (2.8)
vu*2 ¼ Pr
�
v2u*2 þ 1 vu*2

�
� aoRPrRecos

R2nt*
(2.9)
vt* vr* r* vr* u2m a

The solution of Eq. (2.8) is a parabola, which can be written as

�
u*1
�
r*
� ¼ 1� r*2

�
(2.10)

According to Eq. (2.9), u*2ðr*; t*Þ can be solved as:

u*2
�
r*; t*

� ¼ � K1

iU1
eiU1t*

"
1� J0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�iU1=Prr*

p �
J0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�iU1=Pr
p �

#
(2.11)

where

U1 ¼ R2n=a; K1 ¼ aoRPrRe=u2m (2.12)

Substituting Eqs. (2.10) and (2.11) into (2.7) yields

u*
�
r*; t*

� ¼ �
1� r*2

�� K1

iU1
eiU1t*

"
1� J0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�iU1=Pr

p
r*
�

J0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�iU1=Pr
p �

#
(2.13)

Eq. (2.13) is the dimensionless velocity correlation of incom-
pressible laminar pulsating flow in tubes in rolling motion. It
should be noted that Eq. (2.13) neglects the influence of entrance
region and it is only applicable for the fully developed flow. The first
part of Eq. (2.13) is the average velocity and the second part, the
time averaged value of which is zero, denotes the oscillation of
velocity against time. It seems that the dimensionless velocity in
rolling motion is a function of Prandtl number. But it can be found
that iU1/Pr ¼ id2n/y, and the Prandtl number within K1/iU1 can be
reduced. Both iU1/Pr and K1/iU1 have nothing to do with Prandtl
number. So, the velocity is not a function of Prandtl number, but
a function of fluid viscosity.

The energy equation of incompressible laminar flow can be
written as:

vT
vt

þ u
vT
vx

¼ a
�
v2T
vr2

þ 1
r
vT
vr

�
(2.14)

Assuming

T* ¼ ðT � TwÞ=ðTm � TwÞ (2.15)
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where Tw and Tm are the wall temperature and bulk temperature,
respectively. The uniformwall temperature are available in nuclear
systems, like reactor and heat exchangers.

According to Eqs. (2.7) and (2.15), the dimensionless energy
equation can be expressed as:

vT*

vt*
þ u*

vT*

vx*
¼ v2T*

vr*2
þ 1
r*

vT*

vr*
(2.16)

The boundary conditions of Eq. (2.16) are8><
>:

T*
�
x*;1; t*

� ¼ 0
T*
�
0; r*; t*

� ¼ 1
vT*
�
x*;0; t*

��
vr* ¼ 0

(2.17)

The dimensionless temperature can be separated into two
parts:

T*
�
x*; r*; t*

� ¼ T*
1
�
x*; r*

�þ T*2
�
r*; t*

�
(2.18)

The equation of T*
1ðx*; r*Þ can be expressed as

u*1
vT*1
vx*

¼ v2T*1
vr*2

þ 1
r*

vT*
1

vr*
(2.19)

with boundary conditions8><
>:

T*1
�
x*;1

� ¼ 0
T*1
�
0; r*

� ¼ 1
vT*1
�
x*;0

�
=vr* ¼ 0

(2.20)

And the equation of T*
2ðr*; t*Þ can be expressed as

vT*
2

vt*
þ u*2

vT*
1

vx*
¼ v2T*2

vr*2
þ 1
r*

vT*2
vr*

(2.21)

with boundary conditions(
T*2
�
1; t*

� ¼ 0
vT*2
�
0; t*

�
=vr* ¼ 0

(2.22)

Sellars [12] has solved Eq. (2.19) and got a correlation for the
steady-state temperature. In this paper, Sellars' method is intro-
duced. Substituting Eq. (2.10) into (2.19) yields

vT*
1

vx*
¼ 1

1� r*2
1
r*

v

vr*

�
r*
vT*1
vr*

�
(2.23)

The solution of Eq. (2.23) can be expressed as:

T*1
�
x*; r*

� ¼
XN
m¼0

BmRm
�
r*
�
e�g2

mx
*

(2.24)

where

Bm ¼ ð�1Þm2$6
2=3Gð2=3Þ

p
g�2=3
m m ¼ 0;1;2; . (2.25)

The equations for Rm(r*) are therefore for small r* (center of pipe)

Rm
�
r*
� ¼ J0

�
gmr

*
�

(2.26)

for medium r* (0 < r* < 1)

Rm
�
r*
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pgmr*

s
cos
hgm
2

�
r*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r*2

p
þ arcsinr*

	
�p

4

i
�
1� r*2

�1=4 (2.27)

and for big r* (near the wall)
Rm
�
r*
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
�
1� r*

�
3

s
ð�1ÞmJ1=3

" ffiffiffi
8

p
gm
3

�
1� r*

�3=2#
(2.28)

gm ¼ 4mþ 8=3 m ¼ 0;1;2;. (2.29)

The form of solution is rather complicated for calculation
purposes but it is possible to deduce from it that T*1ðx*; r*Þ becomes
a linear function of x* downstream. More accurately, as x* becomes
large,

vT*1=vx
*/4:0 (2.30)

In fact to a good degree of approximation the condition applies
for x* > 1.0.

This result makes it possible to seek a solution of Eq. (2.21) for
T*2ðr*; t*Þ in the form

T*2
�
r*; t*

� ¼ 4f
�
r*
�
eiU1t* (2.31)

Substituting Eq. (2.31) into Eq. (2.21) yields

d2f
dr*

þ 1
r*

df
dr*

� iU1f ¼ g
�
r*
�

(2.32)

where

g
�
r*
� ¼ � K1

iU1

"
1� J0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�iU1=Pr

p
r*
�

J0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�iU1=Pr
p �

#
(2.33)

Eq. (2.32) can be solved for f(r*) to get

f
�
r*
� ¼ C

�
r*
�
J0
� ffiffiffiffiffiffiffiffiffiffiffi

�iU1

p
r*
�

(2.34)

And C(r*) can be written as:

C
�
r*
�¼ Z

r*

1

Zr*
0

g
�
r*
�
exp

Zr*
1

"�2
ffiffiffiffiffiffiffiffiffiffiffi
�iU1

p
J1
� ffiffiffiffiffiffiffiffiffiffiffi

�iU1
p

r*
	

J0
� ffiffiffiffiffiffiffiffiffiffiffi

�iU1
p

r*
	 þ 1

r*

#
dr*

�dr*exp

8><
>:
Zr*
1

�
"�2

ffiffiffiffiffiffiffiffiffiffiffi
�iU1

p
J1
� ffiffiffiffiffiffiffiffiffiffiffi

�iU1
p

r*
	

J0
� ffiffiffiffiffiffiffiffiffiffiffi

�iU1
p

r*
	 þ 1

r*

#
dr*

9>=
>;dr*

(2.35)

In the end, the dimensionless temperature of laminar pulsating
flow can be expressed as:

T*
�
x*; r*; t*

� ¼
XN
m¼0

BmRm
�
r*
�
e�g2

mx
* þ 4C

�
r*
�
J0
� ffiffiffiffiffiffiffiffiffiffiffi

�iU1
p

r*
�
eiU1t*

(2.36)

where the expressions of Bm, Rm(r*) and C(r*) are listed in Eqs.
(2.25)e(2.29), and (2.35).

The transient Nusselt number can be expressed as:

Nu ¼ 2Rh=k (2.37)

According to Eq. (2.28) and (2.36), the transient Nusselt number
can be solved as:

Nu ¼
XN
m¼0

3:3734

g1=3m

e�g2
mx

* þ 8
Z1
0

g
�
r*
�
r*
"
J0
� ffiffiffiffiffiffiffiffiffiffiffi

�iU1
p

r*
�

J0
� ffiffiffiffiffiffiffiffiffiffiffi

�iU1
p �

#2
dr*eiU1t*

(2.38)



B.H. Yan et al. / International Journal of Thermal Sciences 49 (2010) 1003e10091006
3. Parallel-plates channel

The analysis for the case of a parallel-plates channel follows
closely that for a circular tube, and so for brevity we just list the
major changes. In this coordinate, x denotes the flowing direction,
and y is the distance to x axis. The dimensionless NeS equation can
be written as:

vu*

vt*
¼ � 1

r*
vp*

vx*
þ Pr

v2u*

vy*2
(3.1)

where the reference length d is half of the distance between the
plates, the other dimensionless parameters are the same with that
of Eq. (2.3). And the dimensionless velocity can be solved as

u*
�
y*; t*

� ¼ 1� y*2 � K2

iU2
eiU2t*

"
1� ch

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iU2=Pr

p
y*
�

ch
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

iU2=Pr
p �

#
(3.2)

where

U2 ¼ d2n=a; K2 ¼ aodPrRe=u2m (3.3)

Eq. (3.2) is the dimensionless velocity correlation of incom-
pressible laminar flow in parallel-plates channels in rolling motion.
It should be noted that Eq. (3.2) neglects the effect of entrance
region and it is only applicable for the fully developed flow.

The dimensionless energy equation can be expressed as:

vT*

vt*
þ u*

vT*

vx*
¼ v2T*

vy*2
(3.4)

The boundary conditions of Eq. (3.4) are8><
>:

T*
�
x*;1; t*

� ¼ 0
T*
�
0; y*; t*

� ¼ 1
vT*
�
x*;0; t*

��
vy* ¼ 0

(3.5)

The dimensionless temperature can also be separated into two
parts:

T*
�
x*; y*; t*

� ¼ T*
1
�
x*; y*

�þ T*2
�
y*; t*

�
(3.6)

The solution of T*
1ðx*; y*Þ can be expressed as:

T*1
�
x*; y*

� ¼
XN
m¼0

BmYm
�
y*
�
e�g2

mx
*

(3.7)

where

Bm ¼ ð�1Þmþ121=464=3Gð2=3Þ
p3=2

g�7=6
m m ¼ 0;1;2; . (3.8)

for small y* (center of channel)

Ym
�
y*
� ¼ cos

�
gmy

*
�

(3.9)

for medium y* (0 < y* < 1)

Ym
�
y*
� ¼

cosgm



arcsiny*

2
þ sin

�
2arcsiny*

�
4

�
�
1� y*2

�1=4 (3.10)

and for big y* (near the wall)

Ym
�
y*
� ¼ ð�1Þm

�
2
9

�1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pgm

�
1� y*

�q
J1=3

" ffiffiffi
8

p
gm
3

�
1� y*

�3=2#

(3.11)
gm ¼ 4mþ 1=3 m ¼ 0;1;2; . (3.12)

And the solution of T*2ðy*; t*Þ can be expressed as:

T*2
�
y*; t*

� ¼ K2

U2
2

"
� 1� Prch

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iU2=Pr

p
y*
�

ð1� PrÞch
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

iU2=Pr
p 	

þ ch
� ffiffiffiffiffiffiffiffi

iU2
p

y*
�

�
1� PrÞch� ffiffiffiffiffiffiffiffi

iU2
p �� ch

h ffiffiffiffiffiffiffiffi
iU2

p �
1� y*

�i
ffiffiffiffiffiffiffiffi
iU2

p
ch
� ffiffiffiffiffiffiffiffi

iU2
p �

#
eiU2t*

(3.13)

With Eqs. (3.6), (3.7) and (3.13), the expression of T*(x*,y*,t*) can be
written as:

T*
�
x*; y*; t*

� ¼
XN
m¼0

BmYm
�
y*
�
e�g2

mx
*

þ K2

U2
2

"
� 1�

Prch
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

iU2=Pr
p

y*
	

ð1� PrÞch
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

iU2=Pr
p 	

þ
ch
� ffiffiffiffiffiffiffiffi

iU2
p

y*
	

ð1� PrÞch
� ffiffiffiffiffiffiffiffi

iU2
p 	� ch

h ffiffiffiffiffiffiffiffi
iU2

p �
1� y*

�i
ffiffiffiffiffiffiffiffi
iU2

p
ch
� ffiffiffiffiffiffiffiffi

iU2
p 	

#
eiU2t*

ð3:14Þ
Eq. (3.14) is the dimensionless temperature correlation of

incompressible laminar pulsating flow in parallel-plates channels
in rolling motion.

The transient and average Nusselt number can be expressed
as:

Nu ¼ 2dh=k (3.15)

Substituting Eq. (3.14) into (3.15) yields:

Nu ¼
XN
m¼0

4
ffiffiffi
3

p
Gð2=3Þ

pGð4=3Þg1=3m

e�g2
mx

* þ2K2

U2
2

"
�
Pr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iU2=Pr

p
th
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

iU2=Pr
p 	

1�Pr

þ
ffiffiffiffiffiffiffiffi
iU2

p
th
� ffiffiffiffiffiffiffiffi

iU2
p 	

1�Pr

#
eiU2t* ð3:16Þ

Eq. (3.16) is the correlation of Nusselt number of incompressible
laminar flow in parallel-plates channels in rolling motion.
4. Results and discussion

4.1. Comparison

Nield and Kuznetsov [6] have analyzed the heat transfer
characteristics of laminar pulsating flow using a perturbation
method. So, Nield & Kuznetsov's results are compared with the
Nusselt numbers in the present paper. Take the water (20 �C,
0.1 MPa) as an example, assuming R ¼ 0.05 m，d ¼ 0.05 m,
um ¼ 0.01 m/s. Yan [13] has proved that, as to the nuclear power
system, the characteristics length L is usually between 0.1 m and
1.0 m. So we set L ¼ 0.1 m. The comparison results of Nusselt
numbers with different rolling periods and amplitudes are listed
in Tables 1 and 2.

It can be seen from Tables 1 and 2 that the difference between
Nield & Kuznetsov's results and the results in the present paper is
significant. In Nield & Kuznetsov's analysis, the high order term of
perturbation is omitted. So, the precision of his results is deter-
mined by the magnitude of perturbation. If the perturbation is big
enough, Nield & Kuznetsov's results are not applicable. As to the



Table 1
Comparison of Nusselt number of a circular tube (degree means amplitude).

5� 8� 10� 12� 15� 20� 25�

10 s Present work 0.0016 0.0026 0.0033 0.0039 0.0049 0.0065 0.0082
Nield & Kuznetsov's 0.5724 0.9159 1.1448 1.3738 1.7173 2.2897 2.8621

20 s Present work 0.0012 0.0019 0.0023 0.0028 0.0035 0.0047 0.0058
Nield & Kuznetsov's 0.2710 0.4336 0.5421 0.6505 0.8131 1.0841 1.3551

Table 2
Comparison of Nusselt number of a parallel-plates channel (degree means amplitude).

5� 8� 10� 12� 15� 20� 25�

10 s Present work 0.0014 0.0023 0.0029 0.0034 0.0043 0.0057 0.0072
Nield & Kuznetsov's 0.2701 0.4321 0.5401 0.6482 0.8102 1.0803 1.3503

20 s Present work 0.0010 0.0016 0.0020 0.0024 0.0030 0.0041 0.0051
Nield & Kuznetsov's 0.1295 0.2072 0.2590 0.3108 0.3884 0.5179 0.6474
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nuclear power systems, the ratio of amplitude oscillating pressure
and average pressure can be expressed as:

3 ¼
����aoar
���� ¼ p2LqmR2

2yumT2r
(4.1)

As to the parameters analyzed above, 3 z 215.3. In this case, the
role of high order term of perturbation is significant, which cannot
be omitted. So Nield & Kuznetsov's results are much bigger than
that in this paper. It can be concluded that Nield & Kuznetsov's
results is applicable for small perturbation. But as to the nuclear
power system, the perturbation is usually very big, which cannot be
omitted, and the result in this paper is a supplement to Nield &
Kuznetsov's results.

Tan [14] has investigated the heat transfer characteristics of
single-phase flow in rolling motion experimentally. His results are
compared with the results deduced in this paper. The comparing
results are listed in Table 3.

It is indicated in Table 1 that the discrepancy between the
present results and Tan's results is limited. The smaller the rolling
amplitude is, the minor the discrepancy is.
4.2. Circular tubes

The variation of the oscillating amplitude of transient Nusselt
number with Prandtl number is investigated, which is shown in
Fig. 1. It is shown that the oscillating amplitude of transient Nusselt
number increases with the increase of Prandtl number. There is an
approximate linear relation between them. It is indicated in Fig. 2
that the variation of initial phase of Nusselt number with rolling
frequency is very limited. It can be considered to be a constant,
about 35 �.

It is indicated in Fig. 3 that if the rolling period is small, the
oscillating amplitude of Nusselt number is very big and decreases
quickly with the increase of rolling period. But the oscillating
amplitude of Nusselt number can be considered to be a constant if
the rolling period is more than 20 s. Fig. 3 also indicates that there is
Table 3
Comparison with Tan's results (degree means amplitude).

5� 8� 10�

10 s Present work 0.0016 0.0026 0.00
Tan's results 0.0019 0.0026 0.00

20 s Present work 0.0012 0.0019 0.00
Tan's results 0.0015 0.0018 0.00
an approximate linear relation between the oscillating amplitude of
Nusselt number and rolling frequency. In ocean environment, the
rolling frequency is usually less than 1 Hz [8]. So the discussion for
higher frequency is not necessary. And the linear relation is avail-
able for ocean environment.

4.3. Parallel-plates channel

The variation of the oscillating amplitude of transient Nusselt
number in a parallel-plates channel with Prandtl number is
investigated, which is shown in Fig. 4. It is indicated that the
oscillating amplitude of transient Nusselt number increases with
the increase of Prandtl number. There is an approximate linear
relation between them.

It is indicated in Fig. 5 that the variations of oscillating ampli-
tude of Nusselt number in parallel-plates channels with rolling
period and frequency are similar with that in circular tubes. Fig. 5
also indicates that there is an approximate linear relation between
the oscillating amplitude of Nusselt number and rolling frequency
in parallel-plates channel.

In Nuclear power systems,
ffiffiffiffiffiffiffiffi
iU2

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iU2=Pr

p
are usually very

big, and thð
ffiffiffiffiffiffiffiffi
iU2

p
Þ and thð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iU2=Pr

p
Þ are next to 1. Then Eq. (3.16) can

be simplified as:

Nu ¼
XN
m¼0

3:3442

g1=3m

e�g2
mx

* þ 2K2

U2
2

"
� Pr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iU2=Pr

p
1� Pr

þ
ffiffiffiffiffiffiffiffi
iU2

p
1� Pr

#
eiU2t*

(4.2)

Eq. (4.2) is not a good approximation to the solution as Pr / 1,
since it has a singularity there. So Eq. (4.2) is rewritten as:

Nu ¼
XN
m¼0

3:3442

g1=3m

e�g2
mx

* þ 2K2

U2
2

ffiffiffiffiffiffiffiffi
iU2

p
1þ

ffiffiffiffiffi
Pr

p eiU2t* (4.3)

It is indicated in Eq. (4.3) that the initial phase of transient
Nusselt number is a function of

ffiffiffiffiffiffiffiffi
iU2

p
. And it can be easily proved

that the real part of
ffiffiffiffiffiffiffiffi
iU2

p
is equal to its imaginary part. So the initial
12� 15� 20� 25�

33 0.0039 0.0049 0.0065 0.0082
30 0.0033 0.0042 0.0058 0.0075

23 0.0028 0.0035 0.0047 0.0058
22 0.0024 0.0028 0.0039 0.0050



Fig. 1. Variation of oscillating amplitude of Nu with Pr.

Fig. 2. Variation of initial phase of Nu with rolling frequency.

Fig. 4. Variation of oscillating amplitude of Nu with Pr.

Fig. 5. Variation of oscillating amplitude of Nu with rolling frequency.

Fig. 3. Variation of oscillating amplitude of Nu with rolling frequency.
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phase of the transient Nusselt number is 45 �. So, Eq. (4.3) can be
rewritten as:

Nu ¼
XN
m¼0

3:3442

g1=3m

e�g2
mx

* þ 2K2cosðnt þ p=4Þ
U3=2
2

�
1þ

ffiffiffiffiffi
Pr

p 	 (4.4)

5. Conclusions

The heat transfer characteristic of laminar pulsating flow in
a channel or tube in rollingmotion is investigated theoretically. The
correlations of velocity, temperature and Nusselt number are
obtained. And the effects of several parameters on Nusselt number
are investigated. The oscillating amplitude of Nusselt number
increases with the increase of Prandtl number. There is an
approximate linear relation between the oscillating amplitude of
Nusselt number and rolling frequency. The initial phase of Nusselt
number can be considered to be a constant. Nield & Kuznetsov's
results are not applicable for the laminar pulsating flow in nuclear
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power systems in ocean environments. Because Nield's results are
derived from minor disturbance method, while in rolling motion,
the disturbance is significant.
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